Splice variant-specific interaction of the NMDA receptor subunit NR1 with neuronal intermediate filaments.
نویسندگان
چکیده
NMDA receptors are excitatory neurotransmitter receptors critical for synaptic plasticity and neuronal development in the mammalian brain. These receptors are found highly concentrated in the postsynaptic membrane of glutamatergic synapses. To investigate the molecular mechanisms underlying NMDA receptor localization, we used the yeast two-hybrid system to identify proteins expressed in the brain that interact with the NMDA receptor subunit NR1. Here we report that the 68 kDa neurofilament subunit NF-L directly interacts with the NR1 subunit. This interaction occurs between the cytoplasmic C-terminal domain of NR1 and the rod domain of NF-L. However, NR1 splice variants lacking the first C-terminal exon cassette (C1) failed to associate with NF-L. Immunogold electron microscopy revealed a preferential localization of NR1 at the ends of in vitro-assembled neurofilaments. Overexpression of C1 cassette-containing NR1 constructs in fibroblast cells disrupted the assembly of recombinant neurofilaments. In addition, NR1 and NF-L cofractionated in detergent-treated rat brain synaptic plasma membranes. Furthermore, NR1 and NF-L colocalize in the dendrites and growth cones of cultured hippocampal neurons. These results demonstrate the splice variant-specific association of NR1 with neurofilaments and suggest a possible mechanism for anchoring or localizing NMDA receptors in the neuronal plasma membrane.
منابع مشابه
Effect of acute exposure to ethanol on distribution of NR1 subunit of NMDA receptor of glutamate in cerebral cortex of chick embryo
Introduction: There is considerable evidence that glutamate-mediated excitatory neurotransmission plays an important role in mediating the behavioral actions of acutely administered ethanol. The aim of the present study was to investigate the effect of acute ethanol exposure on NR1 subunit of NMDA (n-methyl-d-aspartate) receptor distribution in the cerebral cortex of chick embryo on the 10th...
متن کاملMorphine-Induced Analgesic Tolerance Effect on Gene Expression of the NMDA Receptor Subunit 1 in Rat Striatum and Prefrontal Cortex
Introduction: Morphine is a potent analgesic but its continual use results in analgesic tolerance. Mechanisms of this tolerance remain to be clarified. However, changes in the functions of μ-opioid and N-Methyl-D-aspartate (NMDA) receptors have been proposed in morphine tolerance. We examined changes in gene expression of the NMDA receptor subunit 1 (NR1) at mRNA levels i...
متن کاملO 3:Therapeutic Potential of a Novel NMDA Receptor Subunit 2B Antagonist in a Mouse Model of Autoimmune Neuroinflammation
Glutamate-mediated excitotoxicity and neurodegeneration have been shown as pathophysiological hallmarks of multiple sclerosis (MS) and other autoimmune inflammatory CNS disorders. N‑Methyl‑D‑Aspartate (NMDA) receptors play a pivotal role in the mediation of neuronal glutamate excitotoxicity leading to cellular damage and apoptotic cell death. Current treatment approaches targeting glutamate exc...
متن کاملAlternative splicing of the C-terminal domain regulates cell surface expression of the NMDA receptor NR1 subunit.
Subcellular localization of the NMDA receptor NR1 splice forms was studied by expressing individual splice variants and their epitope-tagged derivatives in mouse fibroblasts and in hippocampal neurons. When NR1 splice variants were expressed in fibroblasts, the amount of NR1 molecules expressed on the cell surface varied among forms with different C-terminal cytoplasmic domains. The splice form...
متن کاملInactivation of NMDA Receptors by Direct Interaction of Calmodulin with the NR1 Subunit
NMDA (N-methyl-D-aspartate) receptors are excitatory neurotransmitter receptors in the brain critical for synaptic plasticity and neuronal development. These receptors are Ca2+-permeable glutamate-gated ion channels whose physiological properties are regulated by intracellular Ca2+. We report here the purification of a 20 kDa protein identified as calmodulin that interacts with the NR1 subunit ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 18 2 شماره
صفحات -
تاریخ انتشار 1998